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Abstract

We study Renormalization Group invariant (RGI) quantities in the Minimal

Supersymmetric Standard Model and show that they are a powerful and simple

instrument for testing high scale models of supersymmetry (SUSY)-breaking. For

illustration, we analyze the frameworks of minimal and general gauge mediated

(MGM and GGM) SUSY-breaking, with additional arbitrary soft Higgs mass pa-

rameters at the messenger scale. We show that if a gaugino and two first generation

sfermion soft masses are determined at the LHC, the RGIs lead to MGM sum

rules that yield accurate predictions for the other gaugino and first generation soft

masses. RGIs can also be used to reconstruct the fundamental MGM parameters

(including the messenger scale), calculate the hypercharge D-term, and find rela-

tionships among the third generation and Higgs soft masses. We then study the

extent to which measurements of the full first generation spectrum at the LHC may

distinguish different SUSY-breaking scenarios. In the case of MGM, although most

deviations violate the sum rules by more than estimated experimental errors, we find

a 1-parameter family of GGM models that satisfy the constraints and produce the

same first generation spectrum. The GGM-MGM degeneracy is lifted by differences

in the third generation masses and the messenger scales.
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Introduction

Supersymmetry (SUSY) is an extension of the Standard Model (SM) space-time symme-

try algebra [1]–[3] that leads to a tightly constrained set of new particles and interactions

and addresses a number of open problems in electroweak-scale physics. These problems

include the stabilization of the weak/Planck scale hierarchy, the origin of the negative

Higgs mass parameter driving electroweak symmetry breaking, and the existence of dark

matter. However, if SUSY is discovered in the laboratory, even the Minimal Supersym-

metric Standard Model (MSSM) will introduce a significant collection of new Lagrangian

parameters to be measured. Many of these parameters are soft masses that explicitly

break SUSY and lift the superpartner spectrum above that of the SM particles. It is ex-

pected that the fundamental source of SUSY-breaking should be spontaneous rather than

explicit, and viable phenomenology is most easily achieved if the breaking takes place

in a hidden sector of fields that couple to the MSSM only through higher-dimensional

operators. These operators may be generated by integrating out degrees of freedom as-

sociated with a characteristic “messenger scale” M . Eventually, with experimental input

for several soft masses, it will become interesting to look for patterns that encode the

origin of these operators and explain precisely how SUSY-breaking is communicated to

the MSSM.

There are several approaches to testing hypotheses about the high scale SUSY-breaking

theory and reassembling its parameters from low scale data. One standard method is a

top-down fit of high scale parameters to the TeV scale measurements. In the top-down

procedure, a Monte Carlo scan is performed over the inputs at M , the soft parameters

are RG-evolved to the TeV scale, observables are calculated, and a χ2 statistic is com-

puted for each point in the scan [4]–[6]. In another method, the bottom-up approach, one

starts with low scale soft parameters and RG-evolves them up until they reach a scale

where some structure emerges [7]–[19]. However, the β-functions of all soft sfermion and

Higgs parameters are sensitive to both the gaugino masses and the hypercharge D-term,

DY ≡ Tr(Ym2), while the third generation soft sfermion β-functions contain the soft tri-

linear parameters. Therefore, all the low-scale soft parameters must be measured before

bottom-up reconstruction methods can be used reliably.

A third, complimentary method is provided by 1-loop Renormalization Group invari-

ant (RGI) quantities in the MSSM [20]. Given a model for the generation of the soft

parameters at M , RGIs facilitate the construction of a wide class of sum rules satisfied

by the TeV scale masses. These sum rules can be used either to increase confidence that

the model is correct, or to predict unmeasured masses from known masses. RGIs can

also be used to reconstruct fundamental parameters at the messenger scale. The RGI
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reconstruction method is entirely algebraic, and most importantly, it can provide consid-

erable information even if some of the RG-coupled masses in the theory are unknown.

This feature is most apparent in models with � 10 degrees of freedom at M , and occurs

for two reasons: some messenger scale parameters can be reconstructed with RGIs that

depend only on a limited set of TeV scale masses, and every sum rule can be traded for

an unknown TeV scale parameter. Furthermore, the ability to determine messenger scale

parameters with RGIs suggests a useful complementarity to the top-down approach: ev-

ery parameter that can be constrained directly with the RGI method can have its range

considerably reduced in a Monte Carlo scan.

One powerful constraint on the SUSY-breaking mediation mechanism is already known,

and comes from the absence of experimental evidence for large flavor-changing neutral

currents. Although not the only method, the simplest approach to achieve agreement

with limits from flavor physics is to assume flavor-blindness of the soft parameters at

the messenger scale [21]–[38]. An attractive way to communicate SUSY-breaking such

that the soft sfermion masses are automatically flavor-universal is known as gauge medi-

ation [39]–[43], wherein the hidden sector couples to the MSSM only through SM gauge

interactions. As the name suggests, assuming a single messenger scale, general gauge me-

diation (GGM) [44] is the most general formulation of gauge mediation. In this class of

models the MSSM soft masses are determined at high scales by current-current correlation

functions in the hidden sector.

In Ref. [20] we studied the application of RGIs to flavor-blind messenger scale mod-

els1. We found that under the well-motivated low scale approximations of minimal flavor

violation and degenerate first and second generation soft sfermion masses (as well as the

assumption of no new sources of CP -violation in the sfermion sector), 14 RGIs could be

used to test the flavor-blindness hypothesis and reconstitute all high scale soft parame-

ters as functions of a single undetermined scale. We then applied the method of RGIs to

GGM and studied the sensitivity with which certain invariants can detect deviations from

a GGM pattern of low scale masses. GGM provides a particularly nice illustration of the

method, because under certain conditions, there are exactly enough nonzero invariants so

that all parameters controlling the soft masses at the messenger scale and the messenger

scale itself can be determined.

Although the application to GGM emphasizes the simplicity of the RGI method,

the large number of free parameters in the theory obscures the usefulness of the fact

that no single invariant depends on all of the soft masses. It is interesting to consider

1
For other studies of RGIs and sum rules in supersymmetry, see Ref. [44]–[51]. Ref. [46] also discusses

RGIs in variations of the MSSM by the addition of singlets and extra gauge groups. For simplicity, we

restrict our attention to RGIs existing strictly in the MSSM.
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instead what can be done if only a subset of the soft masses are determined. With this

assumption, it becomes necessary to consider more restrictive models of SUSY-breaking

with fewer parameters. A convenient example is minimal gauge mediation (MGM), the

simplest explicit implementation of gauge mediation. In MGM, a single complete SU(5)

representation2 (5+ 5̄) of “messenger” particles with characteristic mass scale M couple

directly to the SUSY-breaking vacuum expectation value in the hidden sector, while

coupling only to the gauge sector of the MSSM. Integrating out the messengers at the

scale M produces soft masses of the same form as in GGM, but with specific relationships

between all the soft masses (gauginos as well as the sfermions), controlled by only one

mass parameter and the gauge couplings at the messenger scale. Additional contributions

to the soft SUSY-breaking masses in the Higgs sector may be required by the solution to

the µ-problem, and these contributions can be included with the unknown parameters of

the model.

In this study we continue the analysis of the RGIs and focus on their use in the case

of less-than-complete information about the low energy soft spectrum. For illustration we

work in the context of MGM and consider RGIs that are functions only of the gaugino and

the first generation soft masses. If a third generation mass goes unmeasured, it will not be

possible to test the flavor-blindness hypothesis completely. However, the vanishing of one

particular RGI, Dχ1 , in addition to two standard RGI sum rules encoding gaugino mass

unification, will still provide a strong hint that a gauge-mediated mechanism is at work.

We will use the remaining RGIs to reconstruct fundamental MGM input parameters and

to build two new sum rules satisfied by the gaugino and the first generation soft masses

in MGM.

In Section 1 we briefly review the RGIs in GGM and MGM and use them to formulate

new sum rules in the latter. In Section 2, we study the MGM sum rules from the first of

two directions. Analyzing a minimal set of “realistic” experimental measurements, and

after making a simple approximation to absorb the bulk of the 2-loop corrections [20], we

find that the gluino mass M3, the left-handed squark mass m
Q̃1
, and the right-handed

selectron mass mẽ1 are sufficient to predict the rest of the first generation and gaugino

MGM soft spectrum using the sum rules. From these measurements we also extract

the messenger scale gauge couplings (and thus the messenger scale itself), non-MGM

corrections to the Higgs masses at the messenger scale (encoded inDY (M)), and the values

of the hypercharge, baryon number, and lepton number D-terms (DY3H (Mc), DB3(Mc),

and DL3(Mc)) for the third generation and Higgs at the superpartner scale Mc. In Section

2
A common generalization of MGM is to increase the number of messengers into N (5+ 5̄) represen-

tations, which alters the relationship between the gaugino and the sfermion masses; we will comment on

this possibility further below, but for our purposes in this work we define MGM to be the case N = 1.
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3 we consider the complementary scenario in which all of the first generation and gaugino

masses have been measured. The sum rules can then be checked directly, and the question

arises: how well can an MGM mechanism of SUSY-breaking be distinguished from more

general gauge-mediated mechanisms? We concentrate in particular on the new sum rules

involving the sfermion mass parameters, which are more complex than the well-known

sum rules of gaugino mass unification. A 1-parameter GGM family of deviations from

MGM is found that yields the same first generation and gaugino spectrum, and thus does

not violate the sum rules. We discuss methods to distinguish these GGM models from

MGM. We find formulations of the sum rules that efficiently test other deviations from

MGM and follow the analytical analysis with a detailed numerical investigation of the

constraints. Discussion and conclusions are given in Section 4.

1 RGIs in General and Minimal Gauge Mediation

The GGM framework introduces 6 parameters Ar and Br controlling the soft masses, as

well as the messenger scale M at which the sector transmitting SUSY-breaking to the

MSSM can be integrated out, for a total of 7 degrees of freedom in the observed soft

spectrum at low scales. Additional model parameters include the bilinear Higgs mass

term (or, alternatively, the corresponding value of tan(β), the ratio of the Higgs vaccum

expectation values) and the soft trilinear couplings, but they do not appear in the RGIs

and we will not need to consider them further in our analysis. Explicitly, the gaugino

masses are proportional to three constants Br,3

Mr = g2
r
Br , (1.1)

and the soft sfermion and Higgs masses are proportional to three additional parameters

Ar,

m2
f̃
=

3�

r=1

g4
r
Cr(f)Ar , (1.2)

where r runs over the three gauge groups and the Cr are quadratic Casimirs for the

sfermion representations.

In order to achieve a realistic value for the Higgsino mass parameter µ, GGM may need

to be modified by the inclusion of the parameters δu and δd, which represent additional

contributions to the soft supersymmetry breaking parameters of the Higgs bosons beyond

3
Relative to the definitions of Ref. [44] and our previous work [20], for convenience we absorb a factor

of the messenger scale M into the definitions of the Br.
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Table I: 1-Loop RG Invariants in the MSSM

RGI Definition in Terms of Soft Masses MGM(M) GGM(M)

DB13 2(m2
Q̃1

−m2
Q̃3

)−m2
ũ1

+m2
ũ3

−m2
d̃1

+m2
d̃3

0 0

DL13 2(m2
L̃1

−m2
L̃3
)−m2

ẽ1
+m2

ẽ3
0 0

Dχ1 3(3m2
d̃1

− 2(m2
Q̃1

−m2
L̃1
)−m2

ũ1
)−m2

ẽ1
0 0

DY13H

m2
Q̃1

− 2m2
ũ1

+m2
d̃1

−m2
L̃1

+m2
ẽ1

−
10
13

�
m2

Q̃3
− 2m2

ũ3
+m2

d̃3
−m2

L̃3
+m2

ẽ3
+m2

Hu
−m2

Hd

�
−

10
13 (δu − δd) −

10
13 (δu − δd)

DZ 3(m2
d̃3

−m2
d̃1
) + 2(m2

L̃3
−m2

Hd
) −2δd −2δd

IY α

�
m2

Hu
−m2

Hd
+
�

gen
(m2

Q̃
− 2m2

ũ
+m2

d̃
−m2

L̃
+m2

ẽ
)

�
/g21 (δu − δd) /g21 (δu − δd) /g21

IBr
Mr/g2r B Br

IM1 M2
1 −

33
8 (m2

d̃1
−m2

ũ1
−m2

ẽ1
)

38
5 g41B

2 g41
�
B2

1 +
33
10A1

�

IM2 M2
2 +

1
24

�
9(m2

d̃1
−m2

ũ1
) + 16m2

L̃1
−m2

ẽ1

�
2g42B

2 g42
�
B2

2 +
1
2A2

�

IM3 M2
3 −

3
16 (5m

2
d̃1

+m2
ũ1

−m2
ẽ1
) −2g43B

2 g43
�
B2

3 −
3
2A3

�

Ig2 1/g21 − 33/(5g22) ≈ −10.9 ≈ −10.9

Ig3 1/g21 + 11/(5g23) ≈ 6.2 ≈ 6.2
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those given in Eq. (1.2):

m2
Hu

= m2
L̃1

+ δu,

m2
Hd

= m2
L̃1

+ δd. (1.3)

The 14 1-loop invariants discussed in Ref. [20] and their definitions in terms of the

gauge couplings and the 15 soft masses at any scale above the heaviest sparticle mass

are given in the first two columns of Table I. The third and fourth column lists their

values in terms of MGM and GGM fundamental parameters at the messenger scale.

Small deviations will occur at low scales due to effects of higher order corrections to the

β-functions, and we will discuss them further below.

In GGM, with or without the δu and δd modification, the invariants DB13 , DL13 , and

Dχ1 are zero at M . The vanishing of DB13 and DL13 provides a stringent test of the

flavor-blindness hypothesis, while the vanishing of Dχ1 strongly constrains the parameter

space consistent with GGM. If δu �= δd, there are precisely 11 nonzero RGIs, and so all

6 Ar and Br parameters of GGM, as well as δu, δd, and the 3 gauge couplings at the

messenger scale, can be determined from simple algebraic combinations of the invariants.

Explicit formulae are given in Ref. [20]. This method relies on the ratio DY13H/IYα
in

order to extract the hypercharge gauge coupling at the messenger scale, which can then

be converted into the other high scale gauge couplings with the invariants Ig2 and Ig3 .

Using the analytic expression for the integrated gauge coupling 1-loop RGE, the messenger

scale is determined. On the other hand, if δu = δd, then there is one less free parameter,

but there are two more constraints on the GGM parameter space given by the vanishing of

DY13H and IYα
. Only 9 non-vanishing RGIs are then available for the determination of 10

unknown high energy parameters. Therefore, from the RGIs one can obtain predictions

for 9 of the high energy parameters in terms of a single undetermined one, which can

be taken to be one of the gauge couplings at the messenger scale, or equivalently the

messenger scale itself.

1.1 First generation masses and RGIs

We note from the second column of Table I that of the 14 RGIs, 9 depend only on the

gaugino masses, the first generation masses, and the gauge couplings: Dχ1 , IMr
, IBr

, and

Igi (r = 1, 2, 3 and i = 1, 2). Dχ1 vanishes in gauge mediated models and thus provides

an MGM/GGM sum rule, but cannot be used to determine high scale parameters.

Since m
Q̃1

only appears in Dχ1 , the 8 non-vanishing RGIs depend on 10 Mc scale

values (4 sfermion masses, 3 gaugino masses and 3 gauge couplings). Although the Higgs

mass parameters, δu,d, affect the spectrum through their contribution to the hypercharge
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D-term, these 8 RGIs do not depend explicitly on them, and in GGM they are fixed in

terms of the 9 parameters (Ar, Br, and gr(M)). Consequently these RGIs link a total

of 19 low and high scale parameters. Measurement of the 10 Mc scale masses would

allow the reconstruction of 8 of the messenger scale parameters as a function of a single

undetermined one, which can be taken to be g3(M).

On the other hand, MGM is a 4-dimensional subset of the parameter space of GGM

defined by 5 constraints:

A1 = A2 = A3 ≡ A,

B1 = B2 = B3 ≡ B,

A = 2B2. (1.4)

The relevant parameters of MGM can therefore be taken to be gr(M), B, δu, and δd.

From the third column of Table I we see that in MGM, the number of non-vanishing

first generation + gaugino RGIs is greater than the number of high scale parameters they

depend on. The 8 relevant RGIs are functions of the same 10 Mc scale values as GGM,

but are fixed by only 4 messenger scale parameters (B and the 3 gauge couplings), for a

total of 14 parameters. Thus, given 6 measurements (3 gauge couplings and 3 masses)

at the scale Mc, not only can the B and gr(M) be reconstructed, but the remaining 4

unmeasured low scale masses can also be predicted (the constraint equation Dχ1=0 allows

the determination of m
Q̃1

from the other sfermion masses and thus does not modify this

counting).

If the entire first generation spectrum is measured, the 4 predictions at Mc become

sum rules. The equality of the IBr
provide two familiar constraints (and are satisfied

more generally in any high scale SUSY-breaking model with gaugino mass unification

at the GUT scale). The other two sum rules can be formulated by demanding that the

reconstructed gauge couplings at M satisfy the relationships encoded in Ig2 and Ig3 . These

4 constraints on the low scale soft parameters are related to the 5 constraints given in

Eq. (1.4). The fifth constraint implied by Eq. (1.4) cannot be used to generate a low

scale sum rule when considering only the first generation + gaugino RGIs, but instead

it allows the extraction of g3(M) from these RGIs in MGM models. We will discuss the

implications of this property in Section 3.

The RGI reconstruction of the high scale parameters of MGM or GGM depends on

the parameters that can be measured at the low energy scale, and if the MGM sum rules

can be checked. We depict the different cases described above graphically in Fig. 1.
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Figure 1: The green (light grey) region is GGM parameter space, extending over different Ar,

Br, δu, δd, and M . The blue (medium grey) region denotes the MGM subspace of

GGM, with universal Ar and Br constrained to satisfy the relationship A = 2B2
.

Using the RGIs and assuming a high scale MGM structure, low scale experimental

measurements of only 3 soft masses (small red circle at low scale), including at least

2 scalar masses, can determine consistent B and messenger scale values (middle red

arrow). Low scale measurement of all the gauginos and the first generation masses

(purple shaded oval at low scale), on the other hand, leads to the determination of

a consistent region of GGM parameter space (shaded region between outer purple

arrows).

2 Predicting an MGM Mass Spectrum

2.1 Mass Measurements at the LHC

In Ref. [20], we analyzed the possibility of distinguishing different SUSY-breaking struc-

tures using the RGIs if precise experimental measurements exist for the entire sparticle

mass spectrum at the TeV scale. Although this may be possible, it is not the most plausi-

ble assumption for the near future. It is more likely that only a subset of all the sparticle
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and Higgs mass parameters will be determined with good precision at the LHC. Assuming

a particular minimal SUSY-breaking scenario, the RGIs can still be used to make predic-

tions for the unmeasured sparticle masses, which can then be tested at a higher luminosity

LHC or at future accelerators. To make a detailed program, we try to infer a minimal set

of mass measurements that have the most reasonable chance of being performed at the

LHC in the coming years.

The LHC will primarily search for supersymmetry by the production of heavy colored

particles, which cascade decay into lighter particles. Mass determination of those particles

which appear off-shell in the cascade decays will be very difficult, while on-shell particle

masses can be determined with relatively good precision. In addition, due to the large

backgrounds, the determination of masses in cascade decays containing leptons will be eas-

ier to perform compared to those containing only jets plus missing energy (and eventually

photons if the messenger scale is low enough). In MGM models, the squarks tend to be

heavier than the gluino, and therefore they tend to appear off-shell in the gluino-initiated

cascades. Similarly, left-handed sleptons are heavier than the second-lightest neutralino

and therefore tend to appear off-shell in cascade decays containing leptons, which will

then be dominated by lighter, right-handed sleptons. Cascade decays of gluinos will thus

provide information on the gluino mass, the right-handed slepton masses, and the first and

second lightest neutralino masses. Further information about the messenger scale may

be obtained by the decay of the next-to-lightest superpartner (NLSP) to the gravitino

lightest superpartner (LSP), if the messenger scale is low enough (M � 107 GeV).

Although produced at a lower rate than gluinos, first and second generation left-

handed squarks may be produced at a sufficiently high rate to be measured in the first

years of LHC running. These squarks will decay in cascades involving jets, leptons and

missing energy. Using the masses obtained in the gluino decays, the left-handed squark

masses may be extracted reasonably precisely.

As indicated above, from these cascade decays information on the first and second

neutralino masses may be obtained. However, due to the possible mixing of the gauginos

with relatively light Higgsinos, these masses will provide only approximate information

on the gaugino soft masses M1 and M2. On the contrary, after computing the relevant

radiative corrections, the gluino mass will be directly translatable into M3. We shall

therefore assume that we have good information on the masses M3, mẽ1 , and m
Q̃1

at the

scale of the largest supersymmetric particle mass, which we have denoted Mc as it tends

to be the heaviest colored sparticle. The quantum corrections transforming the measured

pole masses into running masses at Mc introduce an uncertainty that depends on the

unknown spectrum. This problem can be solved by a simple iteration in the calculation

of masses, and we shall consider that no significant new uncertainty is induced by the
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presence of these radiative corrections.

In the last section, we showed that knowledge of three masses and three couplings

at the scale Mc are sufficient to determine the MGM parameters as well as the rest of

the first generation spectrum. We will then assume that M3, mQ̃1
, and mẽ1 are measured

experimentally with a few percent precision atMc, and that the high-scale SUSY-breaking

structure is MGM 4.

2.2 MGM Parameters and Sum Rules

From the the invariants IBr
= B in Table I and the knowledge of the gauge couplings at

Mc, we obtain

B =
M3

g23(Mc)
, M1 = g21(Mc)B, M2 = g22(Mc)B, (2.5)

which can then be compared with the values obtained from cascade decay measurements.

The predictions for M1,2 are equivalent to the two sum rules for GUT-scale gaugino mass

unification. We stress that in our work we have modified the above predictions with 2-loop

corrections to the RGIs, using the simple parametrization given Ref. [20]. (Effectively, in

the expressions for M1 and M2 in Eq. (2.5), B will be shifted by a term given by the log

of an intermediate messenger scale times the difference between the approximate 2-loop

β-functions for the invariants IB3 and IBr
.)

From Table I we see that knowledge of B determines a linear relationship between

the invariants IMr
and the gauge couplings g4

r
(M) at the messenger scale. Imposing

the relationships encoded in Ig2 and Ig3 that should be satisfied by the reconstructed

messenger scale gauge couplings, we obtain two new sum rules:

CMGM
1 ≡

�
38I2

B

5IM1

−
33

5

�
2I2

B

IM2

− Ig2 ≡ 0,

CMGM
2 ≡

�
38I2

B

5IM1

+
11

5

�
−2I2

B

IM3

− Ig3 ≡ 0. (2.6)

Once expressed in terms of low energy mass parameters, Eq. (2.6) together with the

constraint

Dχ1 = 0 (2.7)

allow the determination of three sfermion masses in terms of two measured ones.
4
In this work, we assume the MGM scenario as an example. It should be noted that similar analysis

can be carried out for any choice of SUSY-breaking model.
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Additionally, from IM3 , g3(M) satisfies

g43(M) = −
IM3

2B2
≡

1

2
g43(Mc)

�
3

16M2
3

�
5m2

d̃1
+m2

ũ1
−m2

ẽ1

�
− 1

�
, (2.8)

while the other two couplings may be determined from the Igi

g21(M) =

�
Ig3 −

11

5g23(M)

�−1

,

g22(M) =
33

5

�
Ig3 − Ig2 −

11

5g23(M)

�−1

. (2.9)

Thus, once the spectrum is determined from Eqs. (2.5), (2.6), and (2.7), the messenger

scale can be also determined from the measurement of a single gaugino mass and two

sfermion masses. Note that instead of using Eq. (2.8), one could determine g41(M) or

g42(M) through their relationships to the invariants IM1 and IM2 . Provided the relation-

ships given in Eq. (2.9) are fulfilled, any choice would lead to an equivalent result, with

errors that will depend on the experimental errors on the associated measured quantities.

Finally, as with the gaugino masses, the RGIs given above should be modified to account

for the 2-loop corrections. The most important 2-loop effect is in Ig2 , which can shift

by a few percent. We stress that these corrections do not assume the measurement of

any additional parameters. We shall also implement them in all subsequent numerical

calculations and refer the reader to Ref. [20] for details and expressions.

2.3 Parametric Solutions

Although the determination of the unknown low scale sfermion masses from Eqs. (2.6)

and (2.7) is a generally valid procedure, it is not transparent, since the unknown masses

appear in the denominators of square root expressions. Below we give useful parametric

solutions for the predicted masses as functions of gr(M), which clarifies the dependences

on the measured masses and the expected uncertainties in the predictions. The solutions

can be easily generalized to cases in which the known masses are different from M3, mQ̃1

and mẽ1 . For simplicity of presentation, we shall ignore 2-loop corrections.

Once the gaugino masses are determined using Eq. (2.5), one can use Dχ1 = 0 and

the IM1,2 in Table I to express the first generation sfermion masses as functions of the

measured masses and the gauge couplings at the high scale,

11



m2
L̃1

=
3

22

M2
3

g43(Mc)

�
g41(Mc)

�
38

5

g41(M)

g41(Mc)
− 1

�
+ 11g42(Mc)

�
2
g42(M)

g42(Mc)
− 1

��
−

1

2
m2

ẽ1
,

(2.10)

m2
ũ1

=
3

22

M2
3

g43(Mc)

�
5

3
g41(Mc)

�
38

5

g41(M)

g41(Mc)
− 1

�
− 11g42(Mc)

�
2
g42(M)

g42(Mc)
− 1

��
−

5

6
m2

ẽ1
+m2

Q̃1
,

(2.11)

m2
d̃1

= −
3

22

M2
3

g43(Mc)

�
1

9
g41(Mc)

�
38

5

g41(M)

g41(Mc)
− 1

�
+ 11g42(Mc)

�
2
g42(M)

g42(Mc)
− 1

��
+

1

6
m2

ẽ1
+m2

Q̃1
.

(2.12)

Similarly, rewriting Eqs. (2.9) in terms of the measured gauge couplings and g3(M),

g21(M) = g21(Mc)

�
1 +

11

5

g21(Mc)

g23(Mc)

�
1−

g23(Mc)

g23(M)

��−1

,

g22(M) = g22(Mc)

�
1 +

1

3

g22(Mc)

g23(Mc)

�
1−

g23(Mc)

g23(M)

��−1

. (2.13)

Substituting in Eq. (2.8) the values of mũ1 and m
d̃1

from Eq. (2.11)-(2.12) and g1(M)

and g2(M) from Eqs. (2.13), Eq. (2.8) becomes a high-degree polynomial equation in

g3(M), with coefficients that are functions of the measured gaugino and sfermion masses.

Ignoring very small terms, it reads

g43(M) =
C

162
g43(Mc)

�
1−

32

3 C

g43(M)

g43(Mc)

� �
1−

�
1 + 3

g23(Mc)

g22(Mc)

�
g23(M)

g23(Mc)

�2
, (2.14)

where

C =
1

M2
3

�
6m2

Q̃1
−m2

ẽ1
−

5

33
M2

1 + 9M2
2 −

16

3
M2

3

�
. (2.15)

Generically, with Mc ∼ O(1)TeV, g2(Mc) ∼ 0.65 and g3(Mc) ∼ 1.1. Defining χ =

g23(M)/g23(Mc), Eq. (2.14) can be roughly approximated by

162

C
χ2

∼

�
1−

32

3 C
χ2

�
(1− 9χ)2 . (2.16)

We additionally assume that the messenger scale should be in the range 105 � M � 1016

GeV and therefore

0.25 � g43(M) � 1, (2.17)

12



or equivalently,

0.40 � χ � 0.85. (2.18)

Note that in MGM, C is a number of order 10, which becomes somewhat smaller for larger

values of the messenger scale. Inspection of Eq. (2.16) then determines that typically only

one g3(M) solution satisfies Eq. (2.17) and is therefore physically realistic.

It is simple to solve Eq. (2.14) numerically, even adding the small terms ignored for

simplicity above. It can then be used to calculate the mass spectrum of the first generation

by insertion into Eq. (2.10)-(2.12).

Furthermore, looking at DY13H and IYα
, we see that the Higgs and third generation

masses appear in the same combination in both RGIs. Therefore, once the quantities in

Eqs. (2.5)-(2.9) have been computed, DY (M) and DY3H (Mc) can be predicted from DY13H

and IYα
:

DY (M) = δu − δd =
33

10

�
g21(Mc)

g21(M)
− 1

�−1

(m2
Q̃1

+m2
d̃1
− 2m2

ũ1
−m2

L̃1
+m2

ẽ1
),

=
33

10

�
g21(Mc)

g21(M)
− 1

�−1

DY1(Mc). (2.19)

DY3H (Mc) = 2

�
1 +

13

20

g21(Mc)

g21(M)

��
g21(Mc)

g21(M)
− 1

�−1

(m2
Q̃1

+m2
d̃1
− 2m2

ũ1
−m2

L̃1
+m2

ẽ1
),

=
20

33

�
1 +

13

20

g21(Mc)

g21(M)

�
DY (M). (2.20)

Similarly, since flavor-blindness implies DB13 = DB1−DB3 = 0 and DL13 = DL1−DL3 = 0,

DB3 and DL3 can be predicted from the assumed measurements:

DB3(Mc) = DB1(Mc) = 2m2
Q̃1

−m2
ũ1

−m2
d̃1
, (2.21)

DL3(Mc) = DL1(Mc) = 2m2
L̃1

−m2
ẽ1
. (2.22)

Eqs. (2.20)–(2.22) imply that the determination of 4 soft parameters in the third genera-

tion and Higgs sector, in addition to the 3 soft masses of the first generation + gauginos,

would be sufficient to fix the soft spectrum entirely.

In Tables II and III, we give two example points in the MGM parameter space where

the mass spectrum of the first generation, the messenger scale gauge couplings, DY (M),

DY3H (Mc), DB3(Mc), and DL3(Mc) are calculated using the equations above. The points

correspond to different choices of A = 2B2, (δu−δd), and the messenger scale. To estimate

the uncertainties, we assume that the input sparticle masses {M3, mQ̃1
, mẽ1} have been

13



experimentally measured with central values equal to their MGM values and uncertainties

of about 5%. Although the real errors may be larger than 5% percent, since we choose a

flat uncertainty profile for all the input masses and couplings, the errors in the determined

quantities scale roughly linearly with this value, and 5% provides an easy reference point

to establish the re-scaling. For comparison, we also present results for a 1% uncertainty

in the masses, corresponding to future precision measurements.

The examples in Tables II and III demonstrate that the method is quite powerful:

the propagated errors remain relatively small, and all predicted quantities are within one

standard deviation of their true values. The uncertainty in the masses depends on their

quantum numbers as well as on the messenger scale. The largest uncertainty is induced

by the first terms of Eqs. (2.10)-(2.12), associated with the determination of the gauge

couplings at the messenger scale. The squark masses, mũ1 and m
d̃1
, depend only weakly

on these terms and predominantly on m
Q̃1
. Their relative uncertainty is then small, of

the order of a few percent. On the contrary, m
L̃1

depends dominantly on the first term

and hence its uncertainty tends to be larger, growing with larger values of the messenger

scale. Finally, the messenger scale can be determined. Since the parameters are only

mildly logarithmically sensitive to M , an accurate determination will demand a precise

measurement of the relevant low energy masses. However, we note that the uncertainties

in M are much smaller in MGM than what is generically achieved (when reconstructing

M is possible) in GGM [20], since fewer parameters are involved and the reconstruction

is insensitive to the (δu − δd) splitting.

3 Identifying and Differentiating Minimal within GGM Models

3.1 GGM/MGM Models with Degenerate Low Energy Spectra

If all first generation and gaugino masses are measured at a higher luminosity LHC, the

MGM prediction for the spectrum can be tested. However, for each MGM model, there is

a corresponding set of non-minimal GGMmodels which produces the same first generation

+ gaugino spectrum and thus satisfies the sum rules. These models form a 1-parameter

family which can be parametrized by g3(M).

To identify the degenerate models, it is convenient to introduce the parameters xr:

xr ≡ Ar/2B
2
r
. (3.23)

Then the GGM input parameters areBr, xr, δu,d, and the gauge couplings at the messenger

scale. The three parameters Br can be obtained from the RGIs given by the ratios of the

14



Table II: Predicted spectrum of masses and parameters given a minimal set of measurements

for the MGM model: A = 2B2
= 0.3 TeV

2
, DY (M) = δu − δd = 0 TeV

2
, and

M = 10
7
GeV. The scale Mc = 1 TeV. The Data column gives the model parameters

and the associated spectrum obtained by running the soft masses down to the scale

Mc. The Calculated column gives the predicted mass spectrum and reconstructed

model parameters, calculated using Eqs. (2.5)-(2.22). The final two columns give the

estimated experimental uncertainties in the calculated quantites, assuming universal

soft mass errors of 1% and 5% for the input soft masses.

Data Calculated ±1% ±5%

g1(Mc) 0.4693 0.0047 (1%)
g2(Mc) 0.6481 0.0065 (1%)
g3(Mc) 1.0800 0.0108 (1%)

M3(GeV) 446.8 4.5 22.3
m

Q̃1
(GeV) 641.6 6.4 32

mẽ1(GeV) 114.0 1.1 5.7

g1(M) 0.5159 0.5153 0.0093 0.0329
g2(M) 0.6679 0.6647 0.0080 0.0131
g3(M) 0.9144 0.9093 0.0218 0.0880

M1(GeV) 84.2 84.4 2.5 4.9
M2(GeV) 159.4 158.5 4.8 9.1
m

L̃1
(GeV) 227.2 221.3 10.4 31.1

mũ1(GeV) 608.37 611.6 7.3 34.8
m

d̃1
(GeV) 604.7 607.5 8.2 38.7

Log10M (GeV) 7 6.7 0.6 2.4
A (TeV)2 0.3 0.3 0.013 0.03

DY (M) (TeV)2 0 -0.0075 0.09 0.31
DY3H (Mc) (TeV)

2 -0.0085 -0.0130 0.08 0.28
DB3(Mc) (TeV)

2 0.0889 0.0904 0.0067 0.0157
DL3(Mc) (TeV)

2 0.0902 0.0933 0.0096 0.0287
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Table III: Predicted spectrum of masses and parameters given a minimal set of measurements

for the MGM model: A = 2B2
= 0.8 TeV

2
, DY (M) = δu − δd = 0.4 TeV

2
, and

M = 10
12

GeV. The scaleMc = 1 TeV. The Data column gives the model parameters

and the associated spectrum obtained by running the soft masses down to the scale

Mc. The Calculated column gives the predicted mass spectrum and reconstructed

model parameters, calculated using Eqs. (2.5)-(2.22). The final two columns give the

estimated experimental uncertainties in the calculated quantites, assuming universal

soft mass errors of 1% and 5% for the input soft masses.

Data Calculated ±1% ± 5%

g1(Mc) 0.4686 0.0047 (1%)
g2(Mc) 0.6446 0.0064 (1%)
g3(Mc) 1.0670 0.0107 (1%)

M3(GeV) 707.6 7.1 35.5
m

Q̃1
(GeV) 934.5 9.3 46.5

mẽ1(GeV) 228.6 2.3 11.5

g1(M) 0.5981 0.5881 0.0267 0.1130
g2(M) 0.6905 0.6812 0.0112 0.0284
g3(M) 0.7803 0.7823 0.0281 0.1511

M1(GeV) 136.0 136.5 4.1 7.8
M2(GeV) 254.0 254.5 7.7 14.7
m

L̃1
(GeV) 430.5 409.2 32.4 115.8

mũ1(GeV) 869.5 874.9 9.6 41.9
m

d̃1
(GeV) 848.4 857.0 17.5 76.7

Log10M (GeV) 12 11.7 1.4 5.6
A (TeV)2 0.8 0.78 0.035 0.086

DY (M) (TeV)2 0.4 0.27 0.37 1.5
DY3H (Mc) (TeV)

2 0.313 0.22 0.31 1.2
DB3(Mc) (TeV)

2 0.273 0.273 0.023 0.049
DL3(Mc) (TeV)

2 0.316 0.309 0.055 0.197
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gaugino masses to the gauge couplings squared,

Br = IBr
. (3.24)

Furthermore, the ratios I2
Br
/IMr

constrain the GGM gauge couplings gr(M)GGM and the

xr to satisfy the relationships

1

g23(M)GGM
=

�
−2I2

B3

IM3

�
1−

3

2
(1− x3)

��1/2
,

1

g22(M)GGM

=

�
2I2

B2

IM2

�
1−

1

2
(1− x2)

��1/2
,

1

g21(M)GGM

=

�
38 I2

B1

5 IM1

�
1−

33

38
(1− x1)

��1/2
, (3.25)

while Eq. (2.9) allows the determination of g1,2(M)GGM as a function of the Igr and

g3(M)GGM. Therefore, in GGM the xr are directly related to the invariants via

CGGM
1 ≡

�
38 I2

B1

5 IM1

�
1−

33

38
(1− x1)

��1/2
−

33

5

�
2I2

B2

IM2

�
1−

1

2
(1− x2)

��1/2
− Ig2 = 0,

CGGM
2 ≡

�
38 I2

B1

5IM1

�
1−

33

38
(1− x1)

��1/2
+

11

5

�
−2I2

B3

IM3

�
1−

3

2
(1− x3)

��1/2
− Ig3 = 0.

(3.26)

For xr = 1, Eq. (3.26) becomes the soft mass sum rules of MGM given in Eq. (2.6), but

note that (3.26) holds in GGM even if MGM is not a solution.

Given a measured first generation and gaugino spectrum, the nonzero RGIs are fixed,

and thus Eq. (3.26) defines a curve in the xr space corresponding to a set of GGM

models. The Ar, Br, and gr(M) parameters of these models are set by Eqs. (3.23)–(3.25).

Monotonicity implies that the curve can parameterized by (for instance) g3(M)GGM. If, in

addition, the RGIs satisfy the MGM sum rules in Eq. (2.6), then the curve passes through

the point xr = 1, and all the models on the curve possess a first generation + gaugino

spectrum satisfying the sum rules.

Moreover, these sectors of the spectrum can be made equivalent for all of the models

on the curve by changing (δu−δd) so that DY1(Mc) remains constant. This can be seen as

follows. Given values for the 3 IMr
and the constraint Dχ1 = 0, 4 out of 5 first generation

masses can be fixed. If DY1(Mc) is also specified, then the fifth mass is fixed. From

Eq. (2.19) we see that DY1(Mc) is controlled by (δu − δd). Therefore, adjusting (δu − δd)

along the curve can render the models identical in the first generation and gaugino sectors
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alone5.

Consequently, although Eq. (2.6) provides necessary conditions for an MGM spectrum,

it is not completely sufficient to rule out more general GGM models. However, Eq. (2.17)

limits the physically realizable values of the gauge couplings at the messenger scale, and

therefore places bounds on the curve. For completeness, let us mention that for 105 GeV �
M � 1016 GeV, g1(M) and g2(M) must lie in the ranges

0.05 � g41(M) � 0.25,

0.2 � g42(M) � 0.25. (3.27)

It is very useful to consider a particular linear combination of the invariants possessing

small experimental uncertainties. By themselves the invariants IM1 and IM2 appearing in

the constraint functions tend to have large experimental uncertainties: the squark mass

terms appear with large coefficients and approximately cancel in gauge mediation, while

the experimental uncertainties tend to grow linearly with the squark masses. However,

the combination IM12 , defined as

IM12 = IM1 + 11IM2

= M2
1 +

11

3

�
3M2

2 + 2m2
L̃1

+m2
ẽ1

�
, (3.28)

is manifestly independent of the squark masses, and therefore is likely to be determined

more precisely than IM1 or IM2 alone. Since all terms are positive, its fractional error

is controlled by the error in the measurement of the weakly interacting sparticle masses.

Therefore, in addition to CGGM
1 and CGGM

2 , we will use

CGGM
5 ≡

IM12

I2
B2

+
IM3

I2
B3

�
1−

3

2
(1− x3)

�−1

×





95

11

I2
B1

I2
B2

�
1−

33

38
(1− x1)

��
11− 5Ig3

�
−IM3

2
�
1− 3

2(1− x3)
�
I2
B3

�−2

+ 1089

�
1−

1

2
(1− x2)

��
11 + 5 (Ig2 − Ig3)

�
−IM3

2
�
1− 3

2(1− x3)
�
I2
B3

�−2





= 0, (3.29)

where the constraint function CGGM
5 is now a function of IM12 and IM3 .

5
Note, however, that sufficiently large positive values of (δu − δd) may prevent electroweak symmetry

breaking at low scales.
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Figure 2: Constrained x1 vs. x3 GGM parameter space satisfying Eq. (3.26) and fulfilling the

gauge coupling inequalities given in Eqs. (2.17) and (3.27) and Eq. (3.29) within

1σ (Blue/Dark Grey) or 2σ (Green/Light Grey) for a sample MGM spectrum with

M = 10
12

GeV and A = 2B2
= 0.8. Left : 1% uncertainty; Right : 5% uncertainty.

Figure 3: Constrained x2 vs. x3 GGM parameter space satisfying Eq. (3.26) and fulfilling the

gauge coupling inequalities given in Eqs. (2.17) and (3.27) and Eq. (3.29) within

1σ (Blue/Dark Grey) or 2σ (Green/Light Grey) for a sample MGM spectrum with

M = 10
12

GeV and A = 2B2
= 0.8. Left : 1% uncertainty; Right : 5% uncertainty.

Examples of the curve and bounds are given in Figs. 2 and 3 for a sample MGM point

with Ar = 2B2
r
= 0.8 TeV2 and M = 1012 GeV2. The two plots in each figure reflect an

assumption of 1% and 5% experimental errors respectively in the measured low scale soft

masses. Each point in the xr space is constrained to satisfy CGGM
1 , CGGM

2 , CGGM
5 and

the gauge coupling inequalities within 1σ (Blue/Dark Grey) and 2σ (Green/Light Grey).

These plots show that while x2 and x3 can in general be well-constrained, the limits on

x1 are not as strong. There are two reasons for this behavior. First, a large range of x1

values can be found satisfying CGGM
1 and CGGM

2 even for values of x2,3 relatively close to
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1. In other words, Eqs. (3.26) and (3.29) are relatively insensitive to x1. Secondly, from

Eq. (3.25), large (small) values of x1 correspond to small (large) values of the messenger

scale. Therefore, given low (high) scale MGM model, significant low (high) deviations

from x1 = 1 can be tolerated before the upper (lower) bounds of Eq. (3.27) are violated.

As explained above, the value of (δu − δd) varies along the curve in order to maintain

a fixed first generation + gaugino spectrum. Thus the value of the invariant DY13H is

changing, implying that the third generation + Higgs hypercharge D-term, DY3H (Mc), is

different at each point along the curve. Therefore, the spectrum degeneracy will not hold

in the third generation and Higgs sectors, and this fact could be eventually used to select

the proper model.

3.2 GGM Models that can be Distinguished from MGM

We expect that most deviations from MGM into the more general parameter space of

GGM will result in violations of the sum rules. Since the degree of violation should be

measured relative to expected uncertainties in the experimental determination of the sum

rules, it is important to study them in some detail, looking for alternative formulations

that could lead to more stringent constraints. In this section we will discuss useful refor-

mulations of the constraints CMGM
1 and CMGM

2 and analyze numerically their ability to

rule out deviations from MGM. We will consider simple 1-parameter deviations along dif-

ferent vectors in the xr space, and then revisit the full class of non-minimal GGM models

that satisfy the two constraints.

If Eq. (2.8) or Eq. (2.9) are used to reconstruct an MGM gauge coupling g2
r
(M �)MGM

at a messenger scale M �, but in reality the spectrum is generated by a non-minimal GGM

mechanism, then the MGM reconstruction is related to the gauge coupling g2
r
(M)GGM at

the real messenger scale M via

g2
r
(M �)MGM = g2

r
(M)GGM [1− cr(1− xr)]

1/2 , (3.30)

where cr = {33/38, 1/2, 3/2}. Correspondingly, if the constraints in Eq. (2.6) are imposed

on a non-minimal GGM model, they can be expressed in terms of relations between the

messenger scale parameters as

CMGM
1 ≡

1

g21(M)GGM

�
1−

33

38
(1− x1)

�−1/2

−
33

5

1

g22(M)GGM

�
1−

1

2
(1− x2)

�−1/2

− Ig2 = 0,

CMGM
2 ≡

1

g21(M)GGM

�
1−

33

38
(1− x1)

�−1/2

+
11

5

1

g23(M)GGM

�
1−

3

2
(1− x3)

�−1/2

− Ig3 = 0.

(3.31)
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Since we do not restrict our attention to a fixed low scale spectrum as in the previous

section, these equations define a surface in (M,xr) parameter space containing the line

(M, 1, 1, 1) as well as the MGM-degenerate curve discussed in the previous spectrum. For

a fixed value of M , a new curve within the surface is obtained from Eq. (3.31). We will

refer to this curve as the invariant line, because it is independent of the way the individual

constraint functions are formulated.

In addition to the two “hard” constraints of Eq. (3.31), we require that the recon-

structed couplings gr(M �)MGM lie in a physically reasonable range. Eqs. (2.17) and (3.27)

become

0.05 � 5

38

IM1

I2
B

� 0.25 ,

0.2 � 1

2

IM2

I2
B

� 0.25 ,

0.25 � −
1

2

IM3

I2
B

� 1.0 . (3.32)

From the form of Eqs. (3.31) we see that the effectiveness of the constraint functions at

detecting deviations from MGM is dependent on the messenger scale through the running

gauge couplings. At low M , g3(M)GGM grows rapidly, g2(M)GGM decreases slowly, and

g1(M)GGM decreases rapidly, reducing the sensitivities to x2 and x3. On the other hand,

the constant coefficients are such that the sensitivity to variations in x1 alone is typically

less than to variations in x2 or x3 for all but the lowest messenger scales. Numerically

this can be seen by linearizing Eq. (3.31) around (1, 1, 1) for a sample messenger scale of

105 GeV,

CMGM
1 ≈ −1.8(x1 − 1) + 3.8(x2 − 1),

CMGM
2 ≈ −1.7(x1 − 1)− 1.7(x3 − 1), (3.33)

and for 1016 GeV,

CMGM
1 ≈ −0.8(x1 − 1) + 3.2(x2 − 1),

CMGM
2 ≈ −0.8(x1 − 1)− 3.2(x3 − 1). (3.34)

Considering the limited reactivity of the constraint functions to x1 and x3 in significant

regions of parameter space, it is worthwhile to search for other formulations that have

minimal expected experimental uncertainties. For this purpose we write the constraints in

a form obtained by constructing the invariants IM1/I
2
B
and IM2/I

2
B
out of the reconstructed

B and g43(M
�)MGM. Using Eq. (2.9) and the relations in Eq. (3.25) for xr = 1, we arrive
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at the new constraint functions:

CMGM
3 ≡

5IM1

38I2
B

+
50IM3/I

2
B�

22− 5Ig3
�
−2IM3/I

2
B

�2 ,

CMGM
4 ≡

IM2

2I2
B

+
2178IM3/I

2
B�

22− 5(Ig3 − Ig2)
�

−2IM3/I
2
B

�2 . (3.35)

Eq. (3.35) may be rewritten in terms of the xr,

CMGM
3 = g41(M)GGM

�
1−

33

38
(1− x1)

�
− g43(M)GGM

×

�
g23(M)GGMIg3 −

11

5
�
1− 3

2(1− x3)
�1/2

�−2

,

CMGM
4 = g42(M)GGM

�
1−

1

2
(1− x2)

�
− 9g43(M)GGM

×

�
5

11
g23(M)GGM (Ig3 − Ig2)−

1
�
1− 3

2(1− x3)
�1/2

�−2

. (3.36)

Linearizing Eq. (3.36) around (1, 1, 1), for a messenger scale of 105 GeV gives

CMGM
3 ≈ 0.05(x1 − 1) + 0.05(x3 − 1),

CMGM
4 ≈ 0.09(x2 − 1) + 0.04(x3 − 1), (3.37)

and for 1016 GeV,

CMGM
3 ≈ 0.2(x1 − 1) + 0.8(x3 − 1),

CMGM
4 ≈ 0.1(x2 − 1) + 0.1(x3 − 1). (3.38)

We stress that CMGM
3 and CMGM

4 are not independent from CMGM
1 and CMGM

2 on the

constraint subsurface defined by {Ci = 0}. To reduce experimental errors, we can define

CMGM
5 ≡

19

5
CMGM

3 + 11CMGM
4 = 0, (3.39)

which is again a function of IM12 and IM3 , similarly to CGGM
5 . For a messenger scale of

105 GeV,

CMGM
5 ≈ 0.19(x1 − 1) + 0.99(x2 − 1) + 0.63(x3 − 1), (3.40)
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and for 1016 GeV,

CMGM
5 ≈ 0.76(x1 − 1) + 1.1(x2 − 1) + 4.14(x3 − 1). (3.41)

Although CMGM
5 will prove to be quite a powerful discriminator, the different con-

straint functions are sensitive to different deviations from MGM, and so it is still useful

to apply all of the CMGM
i

as well as the gauge coupling bounds in Eq. (3.32). For ex-

ample, CMGM
3 involves a square that destroys sign information, so that for low x1 there

always exists an x3 that satisfies CMGM
3 = 0. CMGM

2 , on the other hand, clearly cannot

be satisfied for sufficiently low x1, because the first term can become larger than Ig3 .

Secondly, at large M , CMGM
3 and CMGM

5 lose sensitivity for values of x3 < 1, which can

be anticipated as follows. In this region g3(M �)MGM is less than g3(M)GGM. For high

messenger scales, the lower g3(M �)MGM is then translated via Ig3 into a reconstructed

value of g1(M �)MGM that is increasingly closer to the Landau pole above the GUT scale.

Since CMGM
3 contains a positive power of the reconstructed g1(M �)MGM, the constraint is

then violated significantly; however, for constant fractional errors in the low-scale masses,

the experimental uncertainties grow even faster (this is just the consequence of the fact

that the derivative of a function near a simple pole grows faster than the function itself.)

As a result CMGM
3 and CMGM

5 both become ineffective in this region. On the other hand,

precisely because g3(M �)MGM is less than g3(M)GGM, it easily violates Eq. (3.32) when M

is large. For these and similar reasons the constraints provide complementarity to each

other in different regions of parameter space.

3.2.1 Numerical Analysis

We turn now to a numerical study of the constraints and inequalities presented in the

previous section. For this purpose we perform scans over GGM parameter space for low

and high values of M . Since we are interested in the case where (δu−δd) is poorly known,

and our constraint functions are insensitive to δu and δd, we fix them to constant values.

We compute the soft spectrum atM and evolve it down numerically to the TeV scale using

the full 2-loop RGEs [52]. At the TeV scale we assign 5% uncertainties to each soft mass

and add errors in quadrature to obtain final uncertainties on the constraint functions.

Although errors in the soft masses may be larger in practice, they are also likely to be

highly correlated and may experience cancellations. The simple approximation used here

is intended only to provide a qualitative picture of the effectiveness of the RGI method

for distinguishing MGM from GGM.

As discussed previously, the simplicity of the IBr
RGIs makes it unlikely that any

sizable deviation from B1 = B2 = B3 ≡ B will escape detection once the neutralino
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Figure 4: Ability to rule out MGM in the presence of a deformation in the A direction in GGM

parameter space. Left : M = 10
7
GeV; Right : M = 10

15
GeV.

spectrum is determined. The Ar-dependent constraints are less straightforward, and so

as an example we consider deviations from MGM that satisfy universality of the Br and

universality of the Ar, but not necessarily A = 2B2.

In Fig. 4 we plot the scan points in the GGM subspace, coloring them by the maximum

number of standard deviations by which Eqs. (3.31), (3.32), or (3.39) are violated. We

present results for M = 107 GeV and M = 1015 GeV, and restrict to a range 0.3 <

A, 2B2 < 3.0 TeV2 for illustration. For these parameter choices, the low scale soft masses

range from about 500–2000 GeV for the first generation colored sfermions, 220–900 GeV

for the slepton doublet, 110–650 GeV for the slepton singlet, 80–270 GeV for the bino,

and 400–1400 GeV for the gluino.

For x < 1, the sensitivity to displacements from x = 1 is stronger at large M and

is governed by CMGM
1 , CMGM

2 , and g3(M �)MGM, as discussed in the previous section. For

x > 1 the dominant constraint comes from CMGM
5 . Displacements at lower M are also

controlled by CMGM
5 . The slight weakening of the sensitivity towards the upper right in

all plots is due to the fact that a constant step size in A or 2B2 corresponds to a smaller

deviation in x for larger values of 2B2.

Note that the space of x �= 1 models includes those that are relevant for N > 1.

If the only deviation from MGM is in the number of messenger multiplets, then the

sensitivity reflected in Fig. 4 suggests that a constraint requiring N to be an integer may

be reasonably effective. However, we do not investigate this possibility further in this

work.
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Figure 5: GGM points that survive the constraints may still be distinguished from MGM by

demanding that the reconstructed MGMmessenger scale is in a physically acceptable

range. Here we plot the projections of the unconstrained points onto the (x1, x3)
plane (left) and the (x2, x3) plane (right), for values of the messenger scale of 10

7

GeV and 10
15

GeV. Blue and green (dark and light grey) points remain consistent

with the MGM constraints within 2σ after the application of the messenger scale

inequality; red (medium grey) points are outside the uncertainties.

The sensitivity to other types of simple deviations can be understood similarly. Varia-

tions purely in x1 for low scales will be the most difficult to detect, as they are weakly felt

by CMGM
1 and CMGM

2 at both scales, while the dependence of CMGM
5 on x1 indicates that

it is more sensitive at higher scales where g1(M)GGM is larger. Meanwhile the sensitivity

to pure x2 deviations is slightly stronger at low M where the CMGM
5 constraint is more

powerful.

While simple deviations are instructive, it is interesting to consider more general dis-

placements from MGM, particularly those that fall directly along the invariant line As

stressed previously, a moderate probe of such cases is offered by enforcing the inequalities

in Eq. (3.32). To estimate the power of the inequalities, in Fig. 5 we plot the projection

of the invariant line onto the (x1, x3) and (x2, x3) planes for three values of the messenger

scale, coloring points according to whether or not an inequality is violated outside of the

error bars. For the estimation of the uncertainties we use a fixed spectrum near 500 GeV

and retain the 5% uncertainties. A more precise calculation does not qualitatively alter

the results. Since values of x1,2 > 1 and x3 < 1 lead to reconstructed MGM messenger
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scales that are larger than the true M , for low M such deviations are difficult to detect.

On the other hand, x1,2 < 1 and x3 > 1 easily violate the inequalities. At large M the

reverse holds since there is not a large margin for the allowed overestimation of the scale.

4 Conclusions

In this work we have shown that 1-loop Renormalization Group invariant quantities in

the MSSM may be used to study the structure and parameters of SUSY-breaking, even if

only a subset of the soft breaking parameters can be determined experimentally. Working

in the specific example of Minimal Gauge Mediation, we found RGI sum rules in the

first generation and gaugino sectors that may be used to make predictions for unknown

soft masses. We demonstrated that the measurement of one gaugino mass and two first

generation sfermion masses at the LHC is sufficient to determine the rest of the first

generation and gaugino spectrum in MGMmodels, threeD-term relations constraining the

third generation and Higgs spectrum, and the high energy input parameters B, (δu − δd),

and the messenger scale. It is of particular interest that the relevant RGIs are independent

of the Higgs sector soft parameters, the soft trilinear couplings, and all third generation

soft masses, which may be more difficult to extract from experimental data.

In the case that the first generation and gaugino masses are known, we showed that

the sum rules are sensitive to most deviations into the broader parameter space of Gen-

eral Gauge Mediation, including variations in the sfermion mass parameters that are more

complicated to assess than those in the gaugino sector. However, the sum rules cannot

completely differentiate MGM from GGM. A 1-parameter subset of GGM models is con-

sistent with the same low energy first generation and gaugino spectrum as a given MGM

model, but is associated with different values of (δu− δd) and the messenger scale. There-

fore, the GGM models that survive the MGM constraints are limited by the requirement

that the reconstructed messenger scale lies within an acceptable window.

It would be interesting to study the breakdown of the degeneracy between MGM and

GGM models in the third generation and Higgs spectrum, as well as the determination

of (δu + δd) in MGM models. Furthermore, it is of great interest to investigate the com-

plementarity between the RGI method and the top-down approach to SUSY parameter

determination. In the event that a parameter can be fixed via RGI relations, it can be

restricted in a χ2 fit, potentially improving the uncertainties from the fit. Also omitted

from our study is a full analysis of other SUSY-breaking scenarios, including MGM with

N > 1 SU(5) representations of messenger particles. We leave such work for the future.
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